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The cellular solids prepared in the present study consist of a magnesium alloy matrix 
containing a high volume fraction of thin walled hollow alumina spheres. These so-called 
syntactic Mg/Ah03 foams exhibit closed cells of homogeneous morphology. 

Dynamic measurements of the elastic modulus and deformation tests in compression gave 
specific stiffnesses and strengths which are superior to currently available aluminum foams, 
whereas the absolute value of density is somewhat higher. 

Using different Mg-alloys the effect of matrix strength on the compressive strength of 
syntactic magnesium foams was investigated. Foams with randomly packed and hexagonal 
close-packed hollow spheres were studied. The influence of the hollow sphere morphology, 
characterized by the ratio between sphere diameter and wall thickness, has been examined. It 
emerged that both matrix strength and sphere strength significantly contribute to the overall 
strength of the syntactic foams. 

A physical model is proposed to rationalize the measured compressive strength. It is 
based on the rule of mixtures and takes into account the minimum load carrying cross sec
tional area. A good agreement with the experiments is reached. 

1 Introduction 

There is a wide range of methods to fabricate porous metallic structures [ 1]. The method 
employed in the present paper utilizes a second phase which is introduced into a matrix in 
form of hollow spheres, leading to a closed cell composite structure, which has also been 
termed "syntactic foam". Such foams can be produced by liquid metal infiltration of hollow 
ceramic sphere arrays. The technique has been applied to aluminum [2, 3] and to titanium [4] 
matrices. Recently, low density syntactic metal foams have been developed using magnesium, 
the lightest commonly used structural metal, as the matrix component [5, 6]. They will be 
called cellular magnesium matrix composites (CMMCs) in the following. 

The subject of this study is to describe the microstructure and the mechanical properties 
of CMMCs that are very promising for weight saving applications. Moreover, a simple physi
cal model for the compressive strength of CMMCs is presented which is able to rationalize 
the correlation between the mechanical properties and the volume fraction, wall thickness and 
stacking order of the hollow spheres. 
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2 Experimental Procedure 

The materials investigated in this study consist of different magnesium alloy matrices 
(cp-Mg, AM20, AM50, AZ91), containing hollow alumina spheres with a volume fraction of 
approximately 63% for randomly packed and 74% for hexagonal close-packed (HCP) sphere 
arrays. The hollow alumina spheres are commercially available sinter products. Five different 
sphere types with varying physical properties were investigated. The spheres were of two di
ameter sizes, 2.8 and 3.7 mm, with standard deviations of less than 7% for each sphere type, 
while measured apparent sphere densities varied between 0.55 and 1.14 g/cm3

• The average 
wall thicknesses were calculated from the apparent sphere density and the average sphere di
ameter, assuming the wall density as 3.87 g/cm3 for Ah03 [7]. The wall thickness ranged from 
93 to 175 j.lm. The CMMCs were fabricated using a gas pressure assisted infiltration casting 
technique, described elsewhere [6]. Infiltration process parameters were kept constant for all 
composite systems. 

The dynamic modulus was derived from analysis of resonance frequencies of transversal 
vibrations in cylindrical samples, 15 mm in diameter and 80 mm in length. For compression 
tests with randomly packed spheres cylindrical samples, 20 mm in diameter and 30 mm in 
height, were prepared. For the HCP structures rectangular samples, 21 mm in height and 
14 mm in width, were used. The aspect ratio was 1.5 in both cases. All specimens for me
chanical testing were tested in the as-cast condition and machined on all sides to examine the 
properties of the materials structures without any surface skin effects. The average density of 
each sample was calculated by measuring weight and volume. In order to evaluate the me
chanical properties of the magnesium matrix with no spheres, matrix alloys were cast using 
identical process conditions and machined to cylinders, 1 0 mm in diameter and 15 mm in 
height. 

Uniaxial compression tests were carried out between two unlubricated hardened steel 
plates with an initial strain rate of 5.5·10-3/s using an Instron 4505 testing machine. The com
pressive strength ac of the composite was defined according to ASTM Standard E 9-89a as the 
maximum stress at or before first fracture, i.e. the local maximum at the beginning of the 
collapse plateau. 

3 Results 

3.1 Microstructure 

Optical examination of the composites showed good infiltration of the sphere arrays with 
magnesium, i.e. even the narrowest spaces between the hollow spheres were completely filled 
with metal (Fig. 1 ). The cell structure is closed-cellular and homogeneous, i. e. uniform in cell 
size and spatial distribution with spherical pores, as cell shape and size correspond directly to 
the morphology of the hollow spheres. It is one of the main advantages of this type of cellular 
material that the cell structure is not developed dynamically during fabrication, but predeter
mined by the packing of the hollow ceramic spheres. Therefore complete reproducibility of 
the cell structure is easily achieved. 

Random packing of the spheres as illustrated in the X-ray picture of Fig. la implies an 
isotropic material behavior. In contrast, an anisotropic behavior is expected for an ordered 
sphere array like the HCP structure in Fig. 1 b. In the latter case the close-packed planes, visi
ble as broad stripes, are oriented in an angle of 45 o to a vertical reference line representing 
the load axis in the deformation tests, i. e. the maximum shear stress acts on the close-packed 
planes and, consequently, the smallest possible material cross sectional area. 
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Fig. 1: Optical micrographs and X-ray pictures of a randomly packed cellular magnesium 
matrix composite (a) and a HCP structure (b) showing a closed spherical cell structure. 

The thin walls of the ceramic hollow spheres are recognizable as closed circles in the 
X-ray pictures. Close-packed planes in the HCP structure under an angel of 45 °. 

3.2 Modulus and Strength 

In order to give an overview of the mechanical properties of CMMCs and to compare 
their performance to currently available light metal foams, Fig. 2a shows modulus E plotted 
against density p and Fig. 2b shows compressive strength O""c plotted against density p. In ad
dition guidelines for the three performance indices for lightweight design are presented [8]. 
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Fig. 2: (a) Modulus E plotted against density p and (b) compressive strength D""c plotted 
against density pfor syntactic magnesium foams (this paper) and currently available 

aluminumfoams (datafrom Ref [8}). 

It appears that the specific stiffness and strength of the CMMCs is superior to all or most 
of the aluminum foams produced by powder metallurgical (PM) or ingot metallurgical (IM) 
routes in case of axial load or beam bending. In case of bending of panels the specific stiffness 
is comparable to conventional aluminum foams, while the specific strength is again superior 
to most of the other materials. As the plateau stress is almost equal to the compressive 
strength for optimized CMMCs and directly proportional to the energy absorption capacity per 
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unit volume [6], the ordinate in Fig. 2b could be converted to show the superior energy ab
sorption capacity per unit mass of the syntactic magnesium foams. 

The absolute value of density for the syntactic magnesium foams is higher and the range 
of densities is much smaller than for aluminum foams. The lowest density attainable is given 
by the spherical characteristic of the cells, i. e. there is a minimum volume fraction of 3 7 % 
for the matrix in randomly packed structures. Thus, the composite density is mainly controlled 
by the density of the hollow spheres and can be reasonably well predicted by the rule of mix
tures. The sphere density was varied between 1.0 and 1.4 g/cm3 in the present case, corre
sponding to porosity levels ranging from 52 to 42 %. The compressive strength varies ac
cordingly from 30 to 105 MP a and can be tailored to meet specific requirements. The respec
tive contribution of the components will be discussed in detail below. 

3.3 Influence of sphere morphology and matrix strength on compressive strength 

The effect of hollow sphere morphology and the influence of the matrix compressive 
strength on the compressive strength of the composite is shown in Fig. 3 for random structures 
as well as for HCP structures. In the latter case testing was performed in such a way that the 
close-packed planes were under an angle of 45 o to the load axis. 
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Fig. 3: Effect of hollow sphere morphology (a) and matrix compressive strength (b) 
on composite compressive strength. 

Hollow sphere morphology in Fig. 3a is described by the normalized sphere cross sec
tional area, that is equal to the sphere wall cross section divided by the total sphere cross sec
tion. A value of An=l corresponds to a completely filled ceramic sphere. This approach as
sumes that the load carrying area of the spheres is the most relevant parameter. A linear rela
tionship is suggested by the data in Fig. 3a. Also a linear increase is observed for the com
pressive strength of the composite as a function of the compressive strength of the matrix 
alloy as shown in Fig. 3b. 

4 Physical Model for the Prediction of Compressive Strength 

In the following we will try to rationalize the compressive strength O'c of cellular magne
sium matrix composites, i. e. the stress maximum at the start of the collapse plateau. o-c occurs 
at total strains ranging from 1.5 to 3.2 %. On a microstructural level it is characterized by the 
development of shear bands [5, 6] where plastic deformation and fracture of the matrix as well 
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as fracture of the hollow spheres has occurred. The shear bands develop in planes of maxi
mum shear stress, that is planes inclined to the load axis by 45 °. 

As the spheres and the matrix are strained equally, different stresses Tsp and TM will de
velop in both phases in the shear band. If Aspw!Ao and AM/A a represent the area fractions of the 
two phases, where Aspw and AM are the load carrying cross section of the hollow spheres and 
the matrix respectively and A0 is the total area of the cross section where failure occurs, me
chanical equilibrium requires 

(1) 

where S, the Schmid factor, is equal to 0.5. 
In order to calculate O'c from Eqn. ( 1) we set O'M equal to the matrix alloy compression 

strength ()c,M measured independently (Fig. 3). o-sp at the moment of fracture cannot be deter
mined experimentally. For the sake of the argument, we assume that o-sp can be approximated 
by the tensile strength of alumina, O'c,Sp = 262 MP a [7]. 

For the load carrying cross section in the composites an upper and a lower bound may be 
determined. Taking a sufficient volume of random spheres in a matrix, the stereological prin
ciple holds that the area fraction of the different phases is identical to the volume fraction. 
Thus the area fraction of the matrix in Eqn. (1) may be substituted by the volume fraction that 
has been determined experimentally as AAIAo = 0.37. The corresponding value of 0.63 for the 
volume fraction of hollow spheres has to be multiplied with a factor taking the fraction of wall 
material into account. This factor, expressed as a function of outer sphere radius R and wall 
thickness t in Eqn. (2), is identical to the relative density of the hollow spheres. The composite 
compressive strength may then be written as follows: 

(2) 

Comparing the calculated results according to Eqn. (2) with the experiments in Fig. 3 
shows an overestimation of composite strength in all cases. Eqn. (2) can be considered as an 
upper bound, because it neglects the fact that the shear band can develop in areas with a par
ticularly small material cross section. 

A lower bound may be obtained by assuming that the composite fails along the plane of 
the smallest possible material cross section. In case of a close-packed plane the remaining 
matrix cross section in between close-packed spheres is only around 9.3 %, even though the 
volume fraction of the matrix is around 26 %. Assuming a close-packed plane is oriented par
allel to the planes of maximum shear stress the lower bound for the composite compressive 
strength will be reached having the form: 

0'/owerbound = [1-( R- ()
2

]. 0.907. 0' + 0.093. 0' 
c R c,Sp c,M 

(3) 

where the factor taking the fraction of wall material into account is equal to the normalized 
sphere cross sectional area An (see Fig. 3). 

The calculated results according to Eqn. (3) in Fig. 3 are below the measured ones con
firming Eqn. (3) to represent a lower bound. Fig. 3 also contains results for HCP structures. In 
this case, specimens were prepared where close-packed planes were produced deliberately. 
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The tests were then performed in such a way that the close-packed planes were oriented at an 
angle of 45 o to the load axis (see Fig. 1 ). For this data Eqn. (3) does not represent a lower 
bound but the best approximation. As Fig. 3 shows, the experimental and calculated results do 
agree quite well with each other. 

It is quite reasonable to assume that even 
for randomly packed spheres the shear band 
will sometimes be able to propagate along 
close-packed arrays over certain distances. 
This is why the experimental result lie be
tween Eqn. (2) and Eqn. (3) in Fig. 3. In order 
to obtain a very rough estimate of the relevant 
matrix area fraction in a random array, we 
have plotted in Fig. 4 the matrix area fraction 
as a function of the matrix volume fraction for 
different packing arrangements. 

As the volume fraction of the matrix in a 
random structure is known to be around 3 7 % 
the failure area fraction may than be estimated 
to around 14% thus obtaining Eqn. (4) as an 
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Fig. 4: Estimation of load carrying area 
fraction in random sphere arrays. 

approximation for the compression strength of random structures: 

(4) 

This equation (solid line in Fig. 3) is indeed in better agreement with the experimental 
results than the other approaches. 
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